Abstract

The performance of optical wireless communication links depends strongly on the atmospheric conditions and the parameters of the link such as the propagation distance, the operation wavelength, jitter variance, attenuation coefficient and effective beam spot radius at the receiver. The analytical expression for the evaluation of the average capacity of optical wireless communication systems is derived, using the gamma–gamma distribution in the non-Kolmogorov atmosphere turbulence. The impact of atmospheric attenuation, beam wander and pointing errors on the average of the optical wireless communication link is investigated. It is shown that the capacity has a fluctuation curve, when power law α increases, and the power law α of minimum point in fluctuation curve is bigger as the non-Kolmogorov turbulence strength is stronger.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call