Abstract

Storage and discharge conditions of primary lithium batteries are studied and the capacity estimation models during the whole life cycle of underwater vehicles is developed based on temperature. The storage experiments for 90 days at different temperatures and discharge experiments at different temperatures and current rates are conducted. At low temperatures, experimental results reveal that there is no significant capacity decay during storage. At high temperatures, the charge storage capacity attenuates with the increase of storage, and the attenuation rate is directly related to the temperature. In discharge experiments, maximum available capacity increases with temperature during 0 °C to 25 °C, whereas the given phenomenon is not significant at other temperatures. Moreover, the current rate is less important for the maximum available capacity. To establish capacity estimation models during the storage stage and working stage of underwater vehicles, we have developed a capacity decay model and a temperature calibration model. Moreover, the model accuracy is evaluated, and the errors in capacity decay model and temperature calibration model are less than 2% and 0.7%, respectively. Capacity estimation models provided in this research are not only accurate, but also relatively simple, which have high value for underwater vehicles in engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.