Abstract

This paper investigates the mechanisms of how spatially distributed lane changes (LCs) interact and contribute to “capacity-drop” at three types of extended bottlenecks: merge, diverge, and weave. A hybrid approach is used to study the problem: analytical approach to capture the behavior of merging and diverging LCs and numerical simulations to quantify capacity-drop considering various geometric configurations of extended bottlenecks. This study focuses on the impact of LC vehicles’ bounded acceleration on “void” (wasted space) creation in traffic streams when they insert/desert at a lower speed, and interactions among multiple voids. We found that (1) LCs closer to the downstream end of bottlenecks are more likely to create persisting voids and contribute to capacity-drop. (2) For weave bottlenecks, capacity-drop is governed by two counteracting effects of LCs: persisting voids and utilization of vacancies created by diverging vehicles; (3) the more balanced the merging and diverging flows, the lower the capacity-drop; and (4) capacity-drop is minimum if merging LCs occur downstream of diverging LCs, and maximum in the opposite alignment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.