Abstract
The intrinsic bottleneck of graphite intercalation compound mechanism in potassium-ion batteries necessitates the exploitation of novel potassium storage strategies. Hence, utmost efforts have been made to efficiently utilize the extrinsic pseudo-capacitance, which offers facile routes by employing low-cost carbonaceous anodes to improve the performance of electrochemical kinetics, notably facilitating the rate and power characteristics for batteries. This mini-review investigates the methods to maximize the pseudo-capacitance contribution based on the size control and surface activation in recent papers. These methods employ the use of cyclic voltammetry for kinetics analysis, which allows the quantitative determination on the proportion of diffusion-dominated vs. pseudo-capacitance by verifying a representative pseudo-capacitive material of single-walled carbon nanotubes. Synergistically, additional schemes such as establishing matched binder–electrolyte systems are in favor of the ultimate purpose of high-performance industrialized potassium-ion batteries.
Highlights
Suffering from the geopolitical maldistribution of lithium resources, sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) reach a hotspot in view of wider resource reserves compared with lithium-ion batteries (LIBs) (2.09 wt% of K vs. 2.36 wt% of Na vs. 0.0017 wt% of Li) (Carmichael, 1989; Larcher and Tarascon, 2015)
To address the irreversible expansion induced by equilibrium graphite, amorphous carbons come into the focused sight (Xing et al, 2017), which are admittedly classified as hard carbon (HC) and soft carbon (SC)
As for a fixed sweep rate, the specific pseudo-capacitance contribution can be given in detail by the following formula (Torsten et al, 2010; Wang Y. et al, 2016): i k2v 2 where the parameter k1v represents the capacitive process while the k2v 2 is in favor of the diffusion process as stated earlier
Summary
Suffering from the geopolitical maldistribution of lithium resources, sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) reach a hotspot in view of wider resource reserves compared with lithium-ion batteries (LIBs) (2.09 wt% of K vs. 2.36 wt% of Na vs. 0.0017 wt% of Li) (Carmichael, 1989; Larcher and Tarascon, 2015). This mini-review investigates the methods to maximize the pseudo-capacitance contribution based on the size control and surface activation in recent papers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.