Abstract

We study the representation capacity of deep hyperbolic neural networks (HNNs) with a ReLU activation function. We establish the first proof that HNNs can ɛ-isometrically embed any finite weighted tree into a hyperbolic space of dimension d at least equal to 2 with prescribed sectional curvature κ<0, for any ɛ>1 (where ɛ=1 being optimal). We establish rigorous upper bounds for the network complexity on an HNN implementing the embedding. We find that the network complexity of HNN implementing the graph representation is independent of the representation fidelity/distortion. We contrast this result against our lower bounds on distortion which any ReLU multi-layer perceptron (MLP) must exert when embedding a tree with L>2d leaves into a d-dimensional Euclidean space, which we show at least Ω(L1/d); independently of the depth, width, and (possibly discontinuous) activation function defining the MLP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.