Abstract

The enormous capacity potential of multiple-input multiple-output (MIMO) is based on some unrealistic assumptions, such as the complete channel state information (CCSI) at the receiver and Gaussian distributed data. In this paper, in frequency-flat Rayleigh fading environment, we investigate the ergodic capacity of MIMO systems with M-ary phase-shift keying (MPSK) modulation and superimposed pilots for channel estimation. With linear minimum mean square error (LMMSE) channel estimation, the optimal pilots design is presented. For the mathematical tractability, we also derive an easy-computing closed-form lower bound of the channel capacity. Furthermore, the optimal power allocation between the data and pilots is investigated by numerical optimization. It is shown that more power should be devoted to the data in low SNR environments and to the pilots in high SNR environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call