Abstract
The open circuit voltage (OCV) curve of a lithium-ion cell can be described as the difference between the half-cell open circuit potential curves of both electrodes. Fitting a reconstructed OCV curve to the OCV curve of an aged cell allows identification of degradation modes. In this study, we show that this method can also be applied to partial charging curves of a commercial cell with silicon–graphite and NMC-811 as electrode materials. Both the degradation modes and the remaining cell capacity can be determined from the reconstructed OCV curve. For the investigated cell, accurate OCV reconstruction and degradation mode estimation can be obtained from C/30 partial charging curves if the state of charge (SOC) window between 20% and 70% is available. We show that the method is also applicable to charging curves at higher current rates if the additional overpotential is considered by subtracting a constant voltage offset. Capacity estimation with an accuracy of 2% of the nominal capacity is possible for current rates up to approximately C/4 if partial charging curves between 10% and 80% SOC are used, while a maximum current rate of C/15 should be used for accurate estimation of the degradation modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.