Abstract

Putting bounding constraints on the input of a channel leads in many cases to a discrete capacity-achieving distribution with a finite support. Given a finite number of signaling points, we determine reduced subsets and the corresponding optimal probability measures to simplify the receiver design. The objective for the subset selection is to keep the channel quality high by maximizing mutual information and cutoff rate. Two approaches are introduced to obtain a capacity-achieving probability measure for the reduced subset. The first one is based on a preceded signaling point selection while the second one chooses the signaling points and corresponding probabilities simultaneously. Numerical results for both approaches show that using only a small number of signaling points achieves a very high mutual information compared to channels utilizing the full set of signaling points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.