Abstract

Five-level active neutral-point clamped (5L-ANPC) converter is an attractive topology for high-power medium-voltage motor drives. This paper presents a capacitor voltage-balancing method for the 5L-ANPC converter, including the voltage balancing of dc-link capacitors and flying capacitors. In order to ensure that the series-connected or high-voltage switches of the 5L-ANPC converter are operated at fundamental frequency and the other switches are operated at a constant switching frequency, phase-shifted pulse width modulation is used to control this converter. The relationship between the average neutral-point current and zero-sequence voltage is investigated, and an optimum zero-sequence voltage is calculated to regulate the neutral-point potential. The voltage across the flying capacitor is also regulated by adjusting the switching duty cycles of two PWM signals, which varies the operation time of redundant switching states in each switching period. Simulation and experimental results are presented to verify the validity of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call