Abstract

Gallium nitride (GaN) heterojunction field-effect transistors are an enabling technology for high-density converter design. This paper proposes a three-level dc–dc converter with dual outputs based on enhancement-mode GaN devices, intended for use as a battery charger in aircraft applications. The charger can output either 28 or 270 V, selected with a jumper, to satisfy the two most common dc bus voltage requirements in airplanes. It operates as an LLC converter in the 28 V mode and as a buck converter in the 270 V mode. In both operation modes, the devices can realize zero voltage switching (ZVS). With the chosen modulation method, the converter can realize automatic voltage balancing of the flying capacitor and the frequency doubling function to act as an interleaved converter. For the LLC mode, the resonant frequency is twice the switching frequency of primary-side switches, and for the buck mode, the frequency of the output inductor current is also twice the switching frequency. This helps to reduce the size of magnetics while maintaining a low switching loss. Also, the converter utilizes a matrix transformer, with resonant parameters designed to reduce conduction loss and avoid ZVS failure. The operating principle of the converter is analyzed and then experimentally verified on a 1.5-kW prototype with 1 MHz resonant frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.