Abstract
The effect of micron-sized particles on a low-pressure capacitively coupled rf discharge is studied both experimentally and using numerical simulations. In the laboratory experiments, microparticle clouds occupying a considerable fraction of the discharge volume are supported against gravity with the help of the thermophoretic force. The spatiotemporally resolved optical emission measurements are performed with different arrangements of microparticles. The numerical simulations are carried out on the basis of a one-dimensional hybrid (fluid-kinetic) discharge model describing the interaction between plasma and microparticles in a self-consistent way. The study is focused on the role of microparticle arrangement in interpreting the spatiotemporal emission measurements. We show that it is not possible to reproduce simultaneously the observed microparticle arrangement and emission pattern in the framework of the considered one-dimensional model. This disagreement can be attributed to the two-dimensional effects (e.g., radial diffusion of the plasma components) or to the lack of the proper description of the sharp void boundary in the frame of fluid approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.