Abstract

The rate of ionic conduction through the electrolyte of porous electrodes is determined in part by the tortuosity, a factor describing the effective length an ion must travel through the microstructure's pores. To facilitate ionic conduction and adsorption into the electric double-layers of capacitive electrodes, we show that macroscopic pores can be added to reduce the effective tortuosity by providing more direct paths to capacitive interfaces. We show experimental and simulated results of fabricating and testing electrodes that are machined to include macro-pores aligned normal to current collectors. Through the reduction of tortuosity, these “bi-tortuous” electrodes surpass unpatterned electrodes in effective ionic conductivity and capacitance. The degree of improvement is dependent on the electrodes’ thickness and charging rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.