Abstract

The performance of capacitive interdigital sensors involved with anisotropic and inhomogeneous nematic liquid crystal (LC) film is investigated. These sensors have potential applications in chemical and biological systems. The theory for modeling the permittivity tensor of the LC film as a function of the molecular orientation is presented. The LC film is handled as inhomogeneous material where molecules are assumed to have different orientations with respect to the frame axes. Under these conditions, fringing field capacitances as functions of the molecular deformations are calculated. Examples of modeled capacitive interdigital sensors in the present of different inhomogeneous distributions of LC films will be studied and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.