Abstract

Abstract A systematic approach has been employed to statistically analyze the Faradaic and non-Faradaic mechanism on electrodes. Two strategies have been adopted for device design, i.e. symmetric and asymmetric, by using the metal oxide synthesized via sonochemical method and activated carbon electrode. Structural and electrochemical characterization have been performed to investigate the morphological and electrochemical properties of electrode material. Both devices are electrochemically examined by using cyclic voltammetry (CV) and Galvanostatic charge discharge (GCD) measurements to evaluate the electrochemical performance. CV curves are further explored to study the capacitive and diffusive contribution in both devices. The diffusive-controlled contribution at low scan rate in asymmetric device is about 65% which is suitable for supercapattery applications while the symmetric device shows 91% diffusive contribution presenting better performance for battery applications. The strategy unveils the high capacitive and diffusive contribution in asymmetric and symmetric devices, respectively. Results reveal that same material can be exploited for supercapattery and battery applications by implementing different device architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call