Abstract

Various amino acids, including both L- and D-enantiomers, may be present in soils, and recent studies have indicated that plants may access such nitrogen (N) forms. Here, the capacity of Arabidopsis to utilize different L- and D-amino acids is investigated and the constraints on this process are explored. Mutants defective in the lysine histidine transporter 1 (LHT1) and transgenic plants overexpressing LHT1 as well as plants expressing D-amino acid-metabolizing enzymes, were used in studies of uptake and growth on various N forms. Arabidopsis absorbed all tested N-forms, but D-enantiomers at lower rates than L-forms. Several L- but no D-forms were effective as N sources. Plants deficient in LHT1 displayed strong growth reductions and plants overexpressing LHT1 showed strong growth enhancement when N was supplied as amino acids, in particular when these were supplied at low concentrations. Several D- amino acids inhibited growth of wild-type plants, while transgenic Arabidopsis-expressing genes encoding D-amino acid-metabolizing enzymes could efficiently utilize such compounds for growth. These results suggest that several amino acids, and in particular L-Gln and L-Asn, promote growth of Arabidopsis, and increased expression of specific amino acid transporters enhances growth on amino acids. The efficiency by which transgenic plants exploit D-amino acids illustrates how plants can be engineered to utilize specific N sources otherwise inaccessible to them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.