Abstract

Agonist-induced increases in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary artery (PA) smooth muscle cells (SMCs) consist of a transient Ca(2+) release from intracellular stores followed by a sustained Ca(2+) influx. Depletion of intracellular Ca(2+) stores triggers capacitative Ca(2+) entry (CCE), which contributes to the sustained increase in [Ca(2+)](cyt) and the refilling of Ca(2+) into the stores. In isolated PAs superfused with Ca(2+)-free solution, phenylephrine induced a transient contraction, apparently by a rise in [Ca(2+)](cyt) due to Ca(2+) release from the intracellular stores. The transient contraction lasted for 3-4 min until the Ca(2+) store was depleted. Restoration of extracellular Ca(2+) in the presence of phentolamine produced a contraction potentially due to a rise in [Ca(2+)](cyt) via CCE. The store-operated Ca(2+) channel blocker Ni(2+) reduced the store depletion-activated Ca(2+) currents, decreased CCE, and inhibited the CCE-mediated contraction. In single PASMCs, we identified, using RT-PCR, five transient receptor potential gene transcripts. These results suggest that CCE, potentially through transient receptor potential-encoded Ca(2+) channels, plays an important role in agonist-mediated PA contraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.