Abstract

We consider here the lot sizing and scheduling problem in single-level manufacturing systems. The shop floor is composed of unrelated parallel machines with sequence dependent setup times. We propose an integer programming model embedding precise capacity information due to scheduling constraints in a classical lot-sizing model. We also propose an iterative approach to generate a production plan taking into account scheduling constraints due to changeover setup times. The procedure executes two decision modules per iteration: a lot-sizing module and a scheduling module. The capacitated lot-sizing problem is solved to optimality considering estimated data and aggregate information, and the scheduling problem is solved by a GRASP heuristic. In the proposed scheme the information flow connecting the two levels is managed in each iteration. We report a set of computational experiments and discuss future work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call