Abstract

In this paper we generalize the classical dynamic lot-sizing problem by considering production capacity constraints as well as delivery and/or production time windows. Utilizing an untraditional decomposition principle, we develop a polynomial-time algorithm for computing an optimal solution for the problem under the assumption of non-speculative costs. The proposed solution methodology is based on a dynamic programming algorithm that runs in O ( n T 4 ) time, where n is the number of demands and T is the length of the planning horizon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.