Abstract

The authors apply the conductance method at 25 and 150°C to GaAs–Al2O3 metal-oxide-semiconductor devices in order to derive the interface state distribution (Dit) as a function of energy in the bandgap. The Dit is governed by two large interface state peaks at midgap energies, in agreement with the unified defect model. S-passivation and forming gas annealing reduce the Dit in large parts of the bandgap, mainly close to the valence band, reducing noticeably the room temperature frequency dispersion. However the midgap interface state peaks are not affected by these treatments, such that Fermi level pinning at midgap energies remains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.