Abstract

The energy states of InAs/GaAs self-assembled quantum dots (QDs) were analyzed by comparing between two QD systems with different QD sizes. The electrical properties of the QD systems were investigated via capacitance-voltage measurements and capacitance transient spectroscopy (also known as deep-level transient spectroscopy) with selective carrier injection and extraction which can be achieved with very small pulse amplitude under bias variation. For the large QDs, several energy states were found with the use of selective carrier injection and extraction. The thermal-activation energies obtained from the capacitance transient spectra of the large QDs were distributed from 70 to 600 meV. This energy distribution was originated from the quantized states of the individual QDs and the size distribution of the QDs. The spectra of the small QDs showed a well-defined energy state of E(c) - 132 meV. From these results, it was estimated that two to four electrons fill a single QD under the proper measurement bias of 0.2 V pulse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.