Abstract
Two-dimensional electron and hole gases separated by a few nm from each other are produced in p-i-n diodes based upon MBE-grown GaAs/AlGaAs heterostructures. At such interlayer distances, the exciton formation and possibly Bose-Einstein condensation (BEC) is expected. We measure the capacitance between the layers and find it to oscillate as a function of the bias voltage. The peak values exceed the geometric capacitance by up to a factor of two. The surprisingly regular periods of the oscillations are of the order of 10 to 30 mV and scale linearly with the inverse of the thickness, between 60 and 150 nm, of the GaAs layer placed between the barrier and the p-doped AlGaAs. The oscillations are related to the resonant electron tunneling into high energy levels of this GaAs layer acting as a quantum well. We suggest that long lifetimes of the electrons in these levels are the origin of the large peak values of the capacitance. The possible relation of the capacitance oscillations with BEC is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.