Abstract

Titanium surfaces were equipped with positively and negatively charged chemical functional groups by plasma polymerization. Their capability to influence the adhesion of human mesenchymal stem cells (hMSCs) and inflammation processes was investigated on titanium substrates, which are representative of real implant surfaces. For these purposes, titanium samples were coated with plasma polymers from allylamine (PPAAm) and acrylic acid (PPAAc). The process development was accompanied by physicochemical surface analysis using XPS, FT-IR and contact angle measurements. Very thin plasma polymer coatings were created, which are resistant to hydrolysis and delamination. Positively charged amino groups improve considerably the initial adhesion and spreading steps of hMSCs. PPAAm and PPAAc surfaces have an effect on the differentiation of hMSCs, e.g., the expression of osteogenic markers in dependence on culturing conditions. Acrylic acid groups appear to stimulate early mRNA differentiation markers (ALP, COL, Runx2) under basal conditions, whereas positively and negatively charged groups both stimulate late differentiation markers, like BSP and OCN, after 3 days of osteogenic stimulation. Long-term intramuscular implantation in rats revealed that PPAAc surfaces caused significantly stronger reactions by macrophages and antigen-presenting cells compared to untreated control (polished titanium) samples, while PPAAm films did not show a negative influence on the inflammatory reaction after implantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.