Abstract

Information aggregation is the process of summarizing information across the nodes of a distributed system. We present a hierarchical information aggregation system tailored for Peer-to-Peer Grids which typically exhibit a high degree of volatility and heterogeneity of resources. Aggregation is performed in a scalable yet efficient way by merging data along the edges of a logical self-healing tree with each inner node providing a summary view of the information delivered by the nodes of the corresponding subtree. We describe different tree management methods suitable for high-efficiency and high-scalability scenarios that take host capability and stability diversity into account to attenuate the impact of slow and/or unstable hosts. We propose an architecture covering all three phases of the aggregation process: Data gathering through a highly extensible sensing framework, data aggregation using reusable, fully isolated reduction networks, and application-sensitive data delivery using a broad range of propagation strategies. Our solution combines the advantages of approaches based on Distributed Hash Tables (DHTs) (i.e., load balancing and self-maintenance) and hierarchical approaches (i.e., respecting administrative boundaries and resource limitations). Our approach is integrated into our Peer-to-Peer Grid platform Cohesion. We substantiate its effectiveness through performance measurements and demonstrate its applicability through a graphical monitoring solution leveraging our aggregation system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.