Abstract
A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system austenitic piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements for near side inspection. For this study, four circumferential welds in 610mm (24inch) diameter, 36mm (1.42inch) thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches ranged in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through-wall to 64% through-wall. The welds were examined with phased array technology at 2.0 MHz, and compared to conventional ultrasonic techniques as a baseline. The examinations showed that phased-array methods were able to detect and accurately length-size, but not depth size, the notches and flaws through the welds. The ultrasonic results were insensitive to the different welding techniques used in each weld.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.