Abstract

.To identify the microstructural modification of the corneal layers during the course of the disease, optical technologies have been pushing the boundary of innovation to achieve cellular resolution of deep layers of the cornea. Gabor-domain optical coherence microscopy (GD-OCM), an optical coherence tomography-based technique that can achieve an isotropic of resolution over a volume of , was developed to investigate the microstructural modifications of corneal layers in four common corneal diseases. Since individual layer visualization without cutting through several layers is challenging due to corneal curvature, a flattening algorithm was developed to remove the global curvature of the endothelial layer and display the full view of the endothelium and Descemet’s membrane in single en face images. As a result, GD-OCM revealed the qualitative changes in size and reflectivity of keratocytes in Fuchs endothelial corneal dystrophy (FECD), which varied by the degree of disease. More importantly, elongated shape and hyperactivation characteristics of keratocytes, associated with the early development of guttae, appeared to start in the posterior stroma very early in the disease process and move toward the anterior stroma during disease progression. This work opens a venue into the pathogenesis of FECD.

Highlights

  • The cornea, the outermost window of our visual system, is made of five layers (from the anterior to the posterior cornea: the epithelium, the Bowman’s membrane, the stroma, the Descemet’s membrane (DM), and the endothelium)

  • The cornea is accessible for imaging, highly vulnerable to various types of infections and diseases—keratoconus (KC), Fuchs endothelial corneal dystrophy (FECD), pseudophakic bullous keratopathy (PBK), and lattice corneal dystrophy (LCD) to cite a few

  • We investigated the capability of Gabor-domain optical coherence microscopy (GD-Optical coherence microscopy (OCM)) to assess morphological modifications occurring at different stages of FECD

Read more

Summary

Introduction

The cornea, the outermost window of our visual system, is made of five layers (from the anterior to the posterior cornea: the epithelium, the Bowman’s membrane, the stroma, the Descemet’s membrane (DM), and the endothelium). The cornea is accessible for imaging, highly vulnerable to various types of infections and diseases—keratoconus (KC), Fuchs endothelial corneal dystrophy (FECD), pseudophakic bullous keratopathy (PBK), and lattice corneal dystrophy (LCD) to cite a few. The extremely large number of corneal diseases with unclear etiology and the almost impossibility of performing biopsies (except for the scraping of the epithelium) explain the need for high-performance imaging in order to optimize the clinical diagnosis. The cornea is the most commonly transplanted tissue worldwide with >40;000 transplants each year in the United States alone,[1] and objective quality control of corneal grafts in eye banks mainly relies on corneal imaging. Specular microscopy (SM) has been a standard of care in eye banks and clinical practice for evaluating endothelial cell (EC) health and cell attrition, following various types of intraocular

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call