Abstract

Future large arrays of telescopes, used as intensity interferometers, can be used to image the surfaces of stars with unprecedented angular resolution. Fast-rotating, hot stars are particularly attractive targets for intensity interferometry since shorter (blue) wavelength observations do not pose additional challenges. Starting from realistic surface brightness simulations of fast-rotating stars, we discuss the capabilities of future intensity interferometers for imaging effects such as gravity darkening and rotational deformation. We find that two-telescope intensity correlation data allow reasonably good imaging of these phenomena, but can be improved with additional higher order (e.g. three-telescope) correlation data, which contain some Fourier phase information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.