Abstract
Ovarian tissue oocyte (OTO) in vitro maturation (IVM) is a strategy to improve fertility preservation efficiency. Here, the effects of capacitation IVM (CAPA-IVM) on OTO function were investigated. Immature cumulus–oocyte complexes (COCs) from unstimulated 28-day-old mouse ovaries (mimicking OTOs) underwent CAPA-IVM, standard IVM (S-IVM) or in vivo maturation following ovarian stimulation (OS; positive control), and oocyte meiotic maturation and cytoplasmic quality were assessed. CAPA-IVM resulted in improved oocyte meiotic maturation (P < 0.05) and cumulus expansion (P < 0.0001) compared to S-IVM, with expansion comparable to the OS group. MII OTO ROS was lower after CAPA-IVM than S-IVM (P < 0.0001) but not as low as in the OS group (P = 0.036). CAPA-IVM resulted in a better oocyte mitochondrial distribution than S-IVM (P < 0.05) and was similar to the OS group (P > 0.05). Mitochondrial membrane potential in MII OTOs was higher after CAPA-IVM than S-IVM and OS (P < 0.0001). Compared with S-IVM, CAPA-IVM resulted in lower rates of spindle/chromosome configuration and cortical granule distribution abnormalities (P < 0.05), which were similar to OS levels (P > 0.05). MII OTO intracellular Ca2+ levels were similar in the CAPA-IVM and OS groups (P > 0.05), while S-IVM decreased intracellular Ca2+ (P < 0.05). CAPA-IVM and S-IVM decreased mitochondrial Ca2+ levels (P < 0.05). CAPA-IVM increased expression of antioxidant genes (Sod2 and Sirt1) and Egfr (P < 0.05) but not apoptotic genes (Bcl2, Bax and Bcl2/Bax; P > 0.05). CAPA-IVM increased the OTO maturation rate and quality of oocytes from unstimulated mice to the extent that many features of oocyte cytoplasmic quality were comparable to superovulated in vivo matured oocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.