Abstract
We previously reported that CAP1 (Cyclase-Associated Protein 1) regulates matrix adhesion in mammalian cells through FAK (Focal Adhesion Kinase). More recently, we discovered a phosphor-regulation mechanism for CAP1 through the Ser307/Ser309 tandem site that is of critical importance for all CAP1 functions. However, molecular mechanisms underlying the CAP1 function in adhesion and its regulation remain largely unknown. Here we report that Rap1 also facilitates the CAP1 function in adhesion, and more importantly, we identify a novel signaling pathway where CAP1 mediates the cAMP signals, through the cAMP effectors Epac (Exchange proteins directly activated by cAMP) and PKA (Protein Kinase A), to activate Rap1 in stimulating matrix adhesion in colon cancer cells. Knockdown of CAP1 led to opposite adhesion phenotypes in SW480 and HCT116 colon cancer cells, with reduced matrix adhesion and reduced FAK and Rap1 activities in SW480 cells while it stimulated matrix adhesion as well as FAK and Rap1 activities in HCT116 cells. Importantly, depletion of CAP1 abolished the stimulatory effects of the cAMP activators forskolin and isoproterenol, as well as that of Epac and PKA, on matrix adhesion in both cell types. Our results consistently support a required role for CAP1 in the cAMP activation of Rap1. Identification of the key role for CAP1 in linking the major second messenger cAMP to activation of Rap1 in stimulating adhesion, which may potentially also regulate proliferation in other cell types, not only vertically extends our knowledge on CAP biology, but also carries important translational potential for targeting CAP1 in cancer therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.