Abstract

Plaque rupture in atherosclerosis is the primary cause of potentially deadly coronary events, yet about 40% of ruptures occur away from the plaque cap shoulders and cannot be fully explained with the current biomechanical theories. Here, cap buckling is considered as a potential destabilizing factor which increases the propensity of the atherosclerotic plaque to rupture and which may also explain plaque failure away from the cap shoulders. To investigate this phenomenon, quasistatic 2D finite element simulations are performed, considering the salient geometrical and nonlinear material properties of diverse atherosclerotic plaques over the range of physiological loads. The numerical results indicate that buckling may displace the location of the peak von Mises stresses in the deflected caps. Plaque buckling, together with its deleterious effects is further observed experimentally in plaque caps using a physical model of deformable mock coronary arteries with fibroatheroma. Moreover, an analytical approach combining quasistatic equilibrium equations with the Navier–Bresse formulas is used to demonstrate the buckling potential of a simplified arched slender cap under intraluminal pressure and supported by foundations. This analysis shows that plaque caps – calcified, fibrotic or cellular – may buckle in specific undulated shapes once submitted to critical loads. Finally, a preliminary analysis of intravascular ultrasonography recordings of patients with atherosclerotic coronary arteries corroborates the numerical, experimental and theoretical findings and shows that various plaque caps buckle in vivo. By displacing the sites of high stresses in the plaque cap, buckling may explain the atherosclerotic plaque cap rupture at various locations, including cap shoulders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.