Abstract

We address issues related to privacy protection in location-based services (LBS). Most existing research in this field either requires a trusted third-party (anonymizer) or uses oblivious protocols that are computationally and communicationally expensive. Our design of privacy-preserving techniques is principled on not requiring a trusted third-party while being highly efficient in terms of time and space complexities. The problem has two interesting and challenging characteristics: First, the degree of privacy protection and LBS accuracy depends on the context, such as population and road density, around a user's location. Second, an adversary may violate a user's location privacy in two ways: (i) based on the user's location information contained in the LBS query payload, and (ii) by inferring a user's geographical location based on its device's IP address. To address these challenges, we introduce CAP, a Context-Aware Privacy-preserving LBS system with integrated protection for data privacy and communication anonymity. We have implemented CAP and integrated it with Google Maps, a popular LBS system. Theoretical analysis and experimental results validate CAP's effectiveness on privacy protection, LBS accuracy, and communication Quality-of-Service.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.