Abstract

In this paper we construct a family of circle-like continua, each admitting a finest monotone map onto S 1 such that there exists a subset of point inverses which is homeomorphic to the Cantor set cross an interval. We then show how to realize some members of this family as the boundaries ∂U of bounded irreducible local Siegel disks U. These boundaries are geometrically rigid in the following sense: there exist arbitrarily small periodic homeomorphisms of the sphere, conformal on U, which keep U invariant. The embedding portion of this paper follows a flexible construction of Herman. These results provide a partial answer to a question of Rogers and a complete answer to a question of Brechner, Guay, and Mayer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.