Abstract

We establish an extension of Cantor’s intersection theorem for a \({K}\)-metric space (\({X, d}\)), where \({d}\) is a generalized metric taking values in a solid cone \({K}\) in a Banach space \({E}\). This generalizes a recent result of Alnafei, Radenovic and Shahzad (2011) obtained for a \({K}\)-metric space over a solid strongly minihedral cone. Next we show that our Cantor’s theorem yields a special case of a generalization of Banach’s contraction principle given very recently by Cvetkovic and Rakocevic (2014): we assume that a mapping \({T}\) satisfies the condition “\({d(Tx, Ty) \preceq \Lambda (d(x, y))}\)” for \({x, y \in X}\), where \({\preceq}\) is a partial order induced by \({K}\), and \({\Lambda : E \rightarrow E}\) is a linear positive operator with the spectral radius less than one. We also obtain new characterizations of convergence in the sense of Huang and Zhang in a \({K}\)-metric space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.