Abstract
We describe a previously unreported macroscopic Arabidopsis organ, the cantil, named for its 'cantilever' function of holding the pedicel at a distance from the stem. Cantil development is strongest at the first nodes after the vegetative to reproductive inflorescence transition; cantil magnitude and frequency decrease acropetally. Cantils develop in wild-type Arabidopsis accessions (e.g. Col-0, Ws and Di-G) as a consequence of delayed flowering in short days; cantil formation is observed in long days when flowering is delayed by null mutation of the floral regulator FLOWERING LOCUS T. The receptor-like kinase ERECTA is a global positive regulator of cantil formation; therefore, cantils never form in the Arabidopsis strain Ler. ERECTA functions genetically upstream of heterotrimeric G proteins. Cantil expressivity is repressed by the specific heterotrimeric complex subunits GPA1, AGB1 and AGG3, which also play independent roles: GPA1 suppresses distal spurs at cantil termini, while AGB1 and AGG3 suppress ectopic epidermal rippling. These G protein mutant traits are recapitulated in long-day flowering gpa1-3 ft-10 plants, demonstrating that cantils, spurs and ectopic rippling occur as a function of delayed phase transition, rather than as a function of photoperiod per se.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.