Abstract

Carotenoids are a class of pigments with a biological role in light capture and antioxidant activities. High value ketocarotenoids, such as astaxanthin and canthaxanthin, are highly appealing for applications in human nutraceutical, cosmetic, and animal feed industries due to their color- and health-related properties. In this review, recent advances in metabolic engineering and synthetic biology towards the production of ketocarotenoids, in particular the red-orange canthaxanthin, are highlighted. Also reviewed and discussed are the properties of canthaxanthin, its natural producers, and various strategies for its chemical synthesis. We review the de novo synthesis of canthaxanthin and the functional β-carotene ketolase enzyme across organisms, supported by a protein-sequence-based phylogenetic analysis. Various possible modifications of the carotenoid biosynthesis pathway and the present sustainable cost-effective alternative platforms for ketocarotenoids biosynthesis are also discussed.

Highlights

  • Characterization and Biosynthesis of CanthaxanthinCarotenoids are a major class of pigments that are found in the chloroplasts or chromoplasts of photosynthetic organisms, such as plants and algae, and in some non-photosynthetic bacteria and fungi [1,2]

  • Several efforts are being made to improve the large-scale production of carotenoids to accommodate the ever-increasing demand, and these include the optimization of canthaxanthin chemical synthesis, since it is the main source of production for the market of animal feed supplements [9,63]

  • From a biotechnological point of view, the ketocarotenoids astaxanthin and canthaxanthin are among the most important pigments as they are widely used in aquaculture and as feed and food additives [4,109]

Read more

Summary

Introduction

Carotenoids are a major class of pigments that are found in the chloroplasts or chromoplasts of photosynthetic organisms, such as plants and algae, and in some non-photosynthetic bacteria and fungi [1,2]. They are important secondary metabolites for living systems because of their protective action against photooxidative damage by intensive light in photosynthetic organisms and of their anti-oxidant properties [3,4,5,6].

Biosynthetic
Economic Value of Ketocarotenoids and Market Potential
The coupling reaction of one equivalent of Cof
Evolution of Canthaxanthin Biosynthesis
Canthaxanthin Production in Heterologous Systems
Findings
Concluding Remarks
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.