Abstract

Cantharidin, a natural vesicant, inhibits the activity of several PPP family phosphatases, displays antitumor activity, and induces apoptosis in many types of tumor cells. However, the molecular mechanisms underlying the antitumor activity of cantharidin are not clear. Here, dose-response studies confirm a strong correlation between the suppression of phosphatase activity and cell death. Flow cytometry analysis indicates that before apoptosis, cantharidin delays cell cycle progression following DNA replication with no apparent effect on G(1)-S or S-G(2) phase progression. In contrast, studies with double thymidine-synchronized populations of cells indicate that cantharidin can rapidly arrest growth when added during G(2) or early M phase. Immunostaining indicates that cell cycle arrest occurs before the completion of mitosis and is associated with the appearance of aberrant mitotic spindles. Live cell imaging with time-lapse microscopy shows that cantharidin disrupts the metaphase alignment of chromosomes and produces a prolonged mitotic arrest, with the onset of apoptosis occurring before the onset of anaphase. To explore the contribution of individual phosphatases, antisense oligonucleotides and small interfering RNA were developed to suppress the expression of cantharidin-sensitive phosphatases. The suppression of PP2Aalpha, but not PP2Abeta, is sufficient to induce metaphase arrest, during which time lagging chromosomes are observed moving between the spindle poles and the metaphase plate. Immunostaining revealed slightly abnormal, yet predominately bipolar, mitotic spindles. Nonetheless, after a 10- to 15-hour delay, the cells enter anaphase, suggesting that an additional cantharidin-sensitive phosphatase is involved in the progression from metaphase into anaphase or to prevent the onset of apoptosis in cells arrested during mitosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.