Abstract

We investigate antiferromagnetic order of repulsively interacting fermionic atoms in an optical lattice by means of dynamical mean-field theory (DMFT). Special attention is paid to the case of an imbalanced mixture. We take into account the presence of an underlying harmonic trap, both in a local-density approximation and by performing full real-space DMFT calculations. We consider the case in which the particle density in the trap center is at half-filling, leading to an antiferromagnetic region in the center, surrounded by a Fermi liquid region at the edge. In the case of an imbalanced mixture, the antiferromagnetism is directed perpendicular to the ferromagnetic polarization and canted. We pay special attention to the boundary structure between the antiferromagnetic and the Fermi liquid phase. For the moderately strong interactions considered here, no Stoner instability toward a ferromagnetic phase is found. Phase separation is only observed for strong imbalance and sufficiently large repulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.