Abstract

Automated three-dimensional log scanning and positioning systems in a sawmill have a limited time available to reach an optimal positioning solution before primary breakdown sawing starts. In this study a search algorithm (tentacle algorithm) was developed for this task and was empirically evaluated in terms of its ability to find an optimal or close-to-optimal positioning solution in a limited number of iterations. This algorithm was compared to the population-based incremental learning algorithm, the simulated annealing algorithm, and the particle swarm optimisation algorithm. The tentacle algorithm performed the best of all the algorithms evaluated in terms of the mean volume recovery obtained. However, exhaustive searches around the centred and ‘horns-up’ and ‘horns-down’ positions using smaller ranges resulted in better mean volume recovery results than any of the algorithms, although the mean results using this strategy did not differ significantly from that of the tentacle algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.