Abstract
Irradiation is being evaluated as a quarantine treatment of grapefruit (Citrus paradisi Macf. `Marsh'), but it can cause damage to the fruit. Research was conducted to determine if preirradiation heat treatments would improve fruit tolerance to irradiation as they improve tolerance to low temperature injury and to determine if canopy position influenced fruit tolerance to irradiation. Initially, grapefruit were irradiated at 0 or 2.0 kGy at a dose rate of 0.14 kGy·min-1 and selected biochemical changes were monitored over time. There was a marked increase in phenylalanine ammonia-lyase (PAL) activity following irradiation. Maximum activity (≈18-fold increase) was attained 24 hours after irradiation. Subsequently, grapefruit were harvested from interior and exterior canopy positions and irradiated at 0 or 1.0 kGy at a dose rate of 0.15 kGy·min-1 before storage for 4 weeks at 10 °C. Following storage, pitting of flavedo was the most evident condition defect noted as a result of irradiation. Pitting was observed on 27% and 15% of irradiated exterior and interior canopy fruit, respectively, whereas there was no pitting on nonirradiated fruit. Heat treatment before irradiation decreased susceptibility of fruit to damage. Pitting was 26%, 19%, and 17% when fruit were held 2 hours at 20 (ambient), 38 or 42 °C, respectively. Irradiation-induced PAL activity was reduced by temperature conditioning at 38 or 42 °C. Exterior canopy fruit flavedo contained higher levels of total phenols, including flavanols and coumarins compared with interior canopy fruit. Deposition of lignin was not related to canopy position. Neither irradiation nor heat treatment had an effect on total phenols or lignin deposition. Generally, cholesterol, campesterol, stigmasterol, β-sitosterol, and isofucosterol were found to be higher in four steryl lipid fractions in exterior canopy fruit compared with interior canopy fruit. Irradiation increased campesterol in the free sterol and steryl glycoside fractions and decreased isofucosterol in the free sterol fraction. Heat treatments had no effect on individual sterol levels. It seems that irradiation causes a stress condition in the fruit, which leads to pitting of peel tissue. Heat treatment before irradiation reduced damaging effects of irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Horticultural Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.