Abstract

Selected potato (Solanum tuberosum L.) genotypes were grown in the field from May to September during 1984 and 1985, to study their growth and gas exchange responses in a warm climate. The parameters measured were leaf area index (LAI), canopy photosynthesis on ground area basis (CPn-Ga), stomatal conductance, dry matter partitioning and yield. The LAI ranged from 1.40 for Dakchip to 6.60 for Pungo during August 1984. The LAI also differed significantly among the potato genotypes for the three samplings during 1985. Atlantic, Chipbelle and DTO-33 showed no decline in their LAI up to 73 days after planting (DAP), indicating a better heat-stress tolerance response than the other genotypes. During both years, CPn-Ga differed significantly among the genotypes and Pungo had higher CPn-Ga than all the other genotypes. Mean CPn-Ga rates were 1.72 and 4.34 g CO2 m−2hr−1 during 1984 and 1985, respectively. Mean adaxial and abaxial stomatal conductances were 0.86 and 1.46 cm sec−1, during 1984, and stomatal conductances were similar for both years. Stomatal conductance did not appear to limit gas exchange in potato leaves. Dry matter partitioning to tubers ranged from 8.9% for Pungo to 55.5% for Atlantic 67 DAP during 1984. At final harvest, July 19, 1985, dry matter partitioning to tubers varied from 47.5% for Pungo to 69.9% for Chipbelle. The tuber yield ranged from 9.6 to 27.8 MT/ha. This study indicated that Atlantic and La Chipper have potential for growing in a warm climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call