Abstract
The semi-Mediterranean Zagros forests in western Iran are a crucial source of environmental services, but are severely threatened by climatic and anthropological constraints. Thus, an adequate inventory of existing tree cover is essential for conservation purposes. We combined ground samples and Quickbird imagery for mapping the canopy cover in a portion of unmanaged Quercus brantii stands. Orthorectified Quickbird imagery was preprocessed to derive a set of features to enhance the vegetation signal by minimizing solar irradiance effects. A recursive feature elimination was conducted to screen the predictor feature space. The random forest (RF) and support vector machines (SVMs) were applied for modeling. The input datasets were composed of four sets of predictors including the full set of predictors, the four original Quickbird bands, selected vegetation indices, and the soil line-based vegetation indices. The highest r2 and lowest relative root mean square error (RMSE) were observed in modeling with total indices and the full data set in both modeling methods. Regardless of the input dataset used, the RF models outperformed the SVM by returning higher r2 and lower relative RMSEs. It can be concluded that applying these methods and vegetation indices can provide useful information for the retrieval of canopy cover in mountainous, semiarid stands which is crucial for conservation practices in such areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.