Abstract

To initiate photosynthetic studies of sweet cherry (Prunus avium L.) canopy architectures and cropping management under high light and temperature conditions (Yakima Valley, Wash.), we developed a whole-canopy research cuvette system with a variable airflow plenum that allowed different patterns of air delivery (in concentric circles around the trunk) into the cuvette. Air and leaf temperatures (Tair and Tleaf, respectively) were determined at four horizontal planes and four directional quadrants inside cuvette-enclosed canopies trained to a multiple leader/open-bush or a multiple leader/trellised palmette architecture. Air flow rate, air delivery pattern, and canopy architecture each influenced the whole-canopy temperature profile and net CO2 exchange rate (NCER) estimates based on CO2 differentials (inlet-outlet). In general, Tair and Tleaf were warmer (≈0 to 4 °C) in the palmette canopy and were negatively correlated with flow rate. The response of Tair and Tleaf to flow rate varied with canopy position and air delivery pattern. At a flow of 40 kL·min-1 (≈2 cuvette volume exchanges/min), mean Tair and Tleaf values were 2 to 3 °C warmer than ambient air temperature, and CO2 differentials were 15-20 μL·L-1. Tair and Tleaf were warmer than those in unenclosed canopies and increased with height in the canopy. Carbon differentials declined with increasing flow rate, and were greater in the palmette canopy and with a less dispersed (centralized) delivery. Dispersing inlet air delivery produced more consistent values of Tair and Tleaf in different canopy architectures. Such systematic factors must be taken into account when designing studies to compare the effects of tree architecture on whole-canopy photosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call