Abstract

The superior performance of canonical variate analysis (CVA) for fault detection has been demonstrated by a number of researchers using simulated and real industrial data. However, applications of CVA to fault identification of industrial processes, especially for faults that evolve slowly, are not widely reported. In order to improve the performance of traditional CVA-based methods to slowly developing faults, a novel diagnostic approach is put forward to implement incipient fault diagnosis for dynamic process monitoring. Traditional CVA fault detection approach is extended to form a new monitoring index based on indices, Hotelling’s T2, Q and a canonical variate residuals (CVR)-based monitoring index Td. As an alternative to the traditional CVA-based contributions, a CVR-based contribution plot method is proposed based on Q and Td statistics. The proposed method is shown to facilitate fault detection by increasing the sensitivity to incipient faults, and aid fault identification by enhancing the contributions from fault-related variables and suppressing the contributions from fault-free variables. The CVR-based method has been demonstrated to outperform traditional CVA-based diagnostic methods for fault detection and identification when validated on slowly evolving faults in a continuous stirred tank reactor (CSTR) system and an industrial centrifugal pump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.