Abstract
We study spectral properties of two-dimensional canonical systems y′(t)=zJH(t)y(t), t∈[a,b), where the Hamiltonian H is locally integrable on [a,b), positive semidefinite, and Weyl's limit point case takes place at b. We answer the following questions explicitly in terms of H: Here asymptotic distribution means summability and limit superior conditions relative to comparison functions growing sufficiently fast. Making an analogy with complex analysis, this corresponds to convergence class and type w.r.t. proximate orders having order larger than 1. It is a surprising fact that these properties depend only on the diagonal entries of H.In 1968 L.de Branges posed the following question as a fundamental problem: We give a complete and explicit answer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.