Abstract

Let S be the spectrum of a complete discrete valuation ring with fraction field of characteristic 0 and perfect residue field of characteristic p ≄ 3. Let be a truncated Barsotti-Tate group of level 1 over S. If G is not too supersingular, a condition that will be explicitly expressed in terms of the valuation of a certain determinant, then we prove that we can canonically lift the kernel of the Frobenius endomorphism of its special fiber to a subgroup scheme of G, finite and flat over S. We call it the canonical subgroup of G.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.