Abstract

For hypersurface singularities f=0, certain rationality conditions are formulated in terms of the Newton diagram of f and the initial terms of a series expansion of f. A classification of compound Du Val singular points of three-dimensional hypersurfaces (cDV-singularities of Reid) is given. A method is indicated for calculating normal forms of equations of those singular points. The method is based on the spectral sequence of the two-term upper Koszul complex of f with the Newton filtration, which generalizes Arnol'd's spectral sequence for the reduction of functions to normal form. Examples of applications of the method are given. Bibliography: 6 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.