Abstract

Canonical reduction of second-order response surfaces is a useful technique for finding the form and shape of surfaces and often for discovering redundancies that enable the surface to be expressible in a simpler form with fewer canonical predictor variables than there are original predictor variables. Canonical reduction of models subject to linear restrictions has received little attention, possibly due to the apparent difficulty of performing it. An important special application is when the predictor variables are mixture ingredients that must sum to a constant; other linear restrictions may also be encountered in such problems. A possible difficulty in interpretation is that the stationary point may fall outside the permissible restricted space. Here, techniques for performing such a canonical reduction are given, and two mixture examples in the literature are re-examined, and canonically reduced, to illustrate what canonical reduction can and cannot provide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.