Abstract

We generalize the 1+1-dimensional gravity formalism of Ohta and Mann to 3+1 dimensions by developing the canonical reduction of a proposed formalism applied to a system coupled with a set of point particles. This is done via the Arnowitt-Deser-Misner method and by eliminating the resulting constraints and imposing coordinate conditions. The reduced Hamiltonian is completely determined in terms of the particles' canonical variables (coordinates, dilaton field and momenta). It is found that the equation governing the dilaton field under suitable gauge and coordinate conditions, including the absence of transverse-traceless metric components, is a logarithmic Schroedinger equation. Thus, although different, the 3+1 formalism retains some essential features of the earlier 1+1 formalism, in particular the means of obtaining a quantum theory for dilatonic gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.