Abstract
Apart from the case of the KP hierarchy, all known Miura maps between integrable Hamiltonian systems had been proven to be canonical. The remaining KP case is settled below. As a corollary, it is shown that the KP hierarchy is a factor — hierarchy of the mKP one, with the kernel consisting of a single scalar field. A discrete mKP hierarchy and the associated Miura map are constructed, and the latter is shown to be canonical as well. As in the continuous case, this implies that one can extend the discrete KP hierarchy by a single new field into an extended discrete KP hierarchy in such a way that the extended discrete Miura map mKP→eKP is a canonical isomorphism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.