Abstract

We give a necessary and sufficient condition on a $d$-dimensional affine subspace of $\mathbb{R}^n$ to be characterized by a finite set of patterns which are forbidden to appear in its digitization. This can also be stated in terms of local rules for canonical projection tilings, or subshift of finite type. This provides a link between algebraic properties of affine subspaces and combinatorics of their digitizations. The condition relies on the notion of {\em coincidence} and can be effectively checked. As a corollary, we get that only algebraic subspaces can be characterized by patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.