Abstract

The aim of this paper is to construct multi-symplectic structures starting with the geometry of an oriented Riemannian manifold, independent of a Lagrangian or a particular partial differential equation (PDE). The principal observation is that on an n -dimensional orientable manifold M there is a canonical quadratic form Θ associated with the total exterior algebra bundle on M . On the fibre, which has dimension 2 n , the form Θ can be locally decomposed into n classical symplectic structures. When concatenated, these n -symplectic structures define a partial differential operator, J ∂ , which turns out to be a Dirac operator with multi-symplectic structure. The operator J ∂ generalizes the product operator J (d/d t ) in classical symplectic geometry, and M is a generalization of the base manifold (i.e. time) in classical Hamiltonian dynamics. The structure generated by Θ provides a natural setting for analysing a class of covariant nonlinear gradient elliptic operators. The operator J ∂ is elliptic, and the generalization of Hamiltonian systems, J ∂ Z =∇ S ( Z ), for a section Z of the total exterior algebra bundle, is also an elliptic PDE. The inverse problem—find S ( Z ) for a given elliptic PDE—is shown to be related to a variant of the Legendre transform on k -forms. The theory is developed for flat base manifolds, but the constructions are coordinate free and generalize to Riemannian manifolds with non-trivial curvature. Some applications and implications of the theory are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.